I recently discussed problems replicating the results found in an assessment of mandatory helmet legislation in Australia published in Accident Analysis and Prevention (Robinson, 1996). This issue was introduced to me by Linda Ward who has pointed to a related issue.

The anti-helmet website http://www.cycle-helmets.com has a page titled “Spinning” helmet law statistics. Under the heading **Measuring changes in cycle use**, the webpage states

Similarly, in South Australia a telephone survey found no significant decline in the amount people said they cycled but there was a large, significant drop in how much they had actually cycled in the past week

^{24}. In 1990 (pre-law), 17.5% of males aged at least 15 years reported cycling in the past week (210 out of 1201), compared to 13.2% (165 out of 1236) post-law in 1993. For females, 8.1% (102 out of 1357) had cycled in the past week in 1990 compared to 5.9% (98 out 1768) in 1993^{24}.These reductions (24% for males, 26% for females aged at least 15 years) are statistically significant (P < 0.005 for males, P = 0.025 for females).

The citation given is a technical report that evaluated the introduction of helmet legislation in South Australia.[1] Table 1 of the SA report gives frequencies of bicycle riding from two surveys, one in 1990 and the other in 1993, for those aged 15 years or older separated by gender. In this survey, the amount of cycling split into four categories: “At Least Once A Week”, “At Least Once A Month”, “At Least Once Every 3 Months” and “Less Often or Never”. The SA helmet law went into effect on 1 July 1991.

The main problem here is the numbers in the above quote don’t match up to the data in the original report. Here is a screenshot of the table.

When these numbers are corrected and a comparison is made for those cycling at least once a week versus everyone else, the p-values are 0.279 and 0.450 for males and females respectively. Additionally, the relative risks are 0.90 (95% CI: 0.76,1.08) and 0.91 (95% CI: 0.71, 1.17) for males and females respectively. The point estimates for changes in the proportion cycling in the past week are much less than those reported on the webpage.

In addition to using the wrong data, I don’t agree with the analysis. There are four cycling categories which have been collapsed into two — those who cycle at least once a week and those who don’t. A lot of information is needlessly removed from the data. Instead, a chi-square test for independence could’ve been performed and individual changes could be assessed through an investigation of the residuals.

The Pearson residuals for an individual cell from a chi-square test are

where are the observed frequencies and is the expected frequency under an assumption of independence, i.e., no relationship between helmet legislation and the amount of cycling. These residuals are asymptotically normal, so residuals with absolute value greater 1.96 may be considered “statistically significant”. The sign would indicate observing more than expected (if positive) or less than expected (if negative).

When analyses are performed on the full tables, the chi-square tests give p-values of 0.20 and 0.85 for males and females respectively. None of the residuals have absolute value anywhere near 1.96. The largest residual pair is for males cycling “at least once every 3 months”. The signs of the residuals indicate there is less cycling than expected in 1990 (r=-1.04) and more cycling than expected in 1993 (r=1.02) if there is no relationship between helmet legislation and amount of cycling. Here is some R code to do those analyses.

males=matrix(c(204,190,66,83,58,77,871,886),nrow=2)

malesfemales=matrix(c(104,123,59,74,52,64,1141,1507),nrow=2)

femaleschisq.test(males,correct=F)

chisq.test(females,correct=F)chisq.test(males,correct=F)$residuals

chisq.test(females,correct=F)$residuals

The analyses above are stratified by gender and we could perform a unified analysis using Poisson regression. This model is essentially

I’ve simplified things a bit here because the variable has four categories and therefore gets estimated by three dummy variables.

The important comparison here is the interaction between and . If significant, this would indicate helmet legislation and amount of cycling are associated. Using the given South Australian data, the three-way interaction was non-signficant, so was removed from the model. The p-value of the interaction between and is not statistically significant (p=0.41).

No analysis I’ve performed indicates a significant relationship between helmet legislation and amount of cycling in South Australia among those 15 years or older when using the correct data.

Note: The anti-helmet website http://www.cycle-helmets.com is maintained by Chris Gillham. I previously discussed problems with this website here. If you download the PDF version of this report, the author is listed as “Dorre” who I believe is Dorothy Robinson. Both Gillham and Robinson are editorial board members of the anti-helmet organisation Bicycle Helmet Research Foundation.

- Marshall, J. and M. White, Evaluation of the compulsory helmet wearing legislation for bicyclists in South Australia Report 8/94, 1994, South Australian Department of Transport, Walkerville, South Australia.

Pingback: More Cherry-Picking from Cycle-Helmets.Com | Injury Stats